Principle Components Analysis [主成份分析]

Keywords - statistics, 多變項分析, 一般線性模式

Tags - statistics, multivariate analysis

屬於因素分析中的一種。:?:

將許多自變項,依據其化約為數個變項,以減低掌握自變項與依變項間關係的複雜度。此化約的變項,即為主成份,作為代表所有自變項對依變項的影響。即,主成份分析可以用來減少變項的數量,形成新的主成份變項,而此主成份變項是由原本的自變項所計算得來的。

透過對於自變項的化簡,研究者可以有數種應用:

  1. 更容易發現自變項與依變項間的因果關係,或對研究結果建立更佳的解釋。
  2. 綜合多項變數,形成指標。
  • 變異數-共變異數(variance-covariance)矩陣
  • 特徵值(Eigen values) = λ
  • 每一個特徵值(λ)對應的特徵向量(Εigen vectors) = Κ
  • 當λ1為第一個主成份的特徵值,亦即其為第一個主成份的變異數;λ2為第二個主成份的特徵值,亦即其為第二個主成份的變異數;λ3為第三個主成份的特徵值,亦即其為第三個主成份的變異

主成份數量的選取

  1. 總變異比例 - 選取出的主成份能夠解釋原有變項對資料造成的總變異,具有達代表性的比例。此比例一般會定為0.8,即80%。
  2. 特徵值 - 選取出主成份的特徵值大於所有成份之平均特徵值者。在標準化資料的情況下,選取特徵值大於一者。
  3. 透過檢視特徵值排列圖(陡坡圖,sccree plot),選取開始變得平緩的點所對應的成份數量。
  4. 透過特定統計檢定法(Bartlett test)

適用性

主成份分析的一個目的,是將一些原本互有關係的變數,轉換為互不相關的變數。因此,如果原有變數間相關性很低,那麼經過主成份分析之後,產生的主成份數量也不會太少。(林師模、陳苑欽,2006,頁141)

與因素分析的異同

  • 相似:縮減原有變數資料
  • 相異:
    • 主成份分析:利用原有變數,組合成新的變數,而此新的變數將儘可能解釋大部分的資料變異
    • 因素分析:找出可解釋原有變數間相關性的隱藏因素或構念(construct)

References

  • 林師模、陳苑欽(2006)。多變量分析:管理上的應用。台北市:雙葉書廊。